ECE 3534
Microprocessor System Design

Prof. P. Athanas
athanas@vt.edu

Blackboard Site: http://learn.vt.edu
What we expect of you . . .

- An understanding of the basics of
 - Combinational and sequential logic
 - Binary representations and arithmetic
 - Assembly language
 - Computer organization

- A desire to do some work:
 - Laboratory assignments
 - Technical content and “Writing intensive” content
 - Homework
 - Online quizzes
 - A mid-semester exam
 - A final exam
What you can expect from us . . .

- Develop an in-depth understanding of the operation and design of microprocessors in general, to include:
 - Hardware
 - Software
 - Integrated systems
- Develop a thorough understanding of the Xilinx MicroBlaze microcontroller as a learning vehicle
- Ultimate goal: be able to apply this knowledge to more advanced microprocessors
Major, Measurable Learning Objectives

- Compare alternative microprocessor and microcontroller features and select features appropriate for a given application task.
Major, Measurable Learning Objectives

- Design hardware and software, and compare alternative designs for one or more specific microprocessors and/or microcontrollers considering:
 - address, data, and control signals
 - input/output hardware and control software
 - interrupt hardware and control software
 - external read-only and read/write memory
 - system buses
 - external device addressing
Major, Measurable Learning Objectives

- Implement microprocessor-based systems, including both hardware and software, using a specific microprocessor or microcontroller considering application-oriented software and hardware interfaces.
 - application-oriented software
 - hardware interfaces
Major, Measurable Learning Objectives

- Write and revise technical reports
Course Logistics

ECE3534
QOTD
MWF
QUESTION: The Sony Playstation 3 features the IBM Cell processor, which has 234 million transistors, measures 235 square millimeters (mm²) in size, can run at speeds of more than 4 gigahertz (GHz), has a memory bandwidth of 25.6 gigabytes per second (GBps), and has an input/output (I/O) bandwidth of 76.8 Gbps. This is a multi-core processor featuring nine separate processors. One of the processor cores is most similar to which of the following processors:

a) ARM
b) PowerPC
c) Motorola HC11
d) Intel Core Solo
e) PIC18
f) Intel 8051
CHECK BLACKBOARD ANNOUNCEMENTS REGULARLY
EMAIL ETIQUETTE
Course Introduction

ECE3534
Common Computer Organization

- **Memory** - Stores programs and data
- **CPU** - Central Processing Unit
- **ALU** - Arithmetic & Logic Unit
- **Control Unit** - Sequences data transfers and other operations
- **I/O Unit** - Communicates with the “outside world”

![Diagram of computer organization](image)
Computer Architecture

- Classic **von Neumann** computer organization:
 - Store programs as codes that can be changed easily, rather than using special wiring
 - “General-purpose”
 - Instructions and data can share the same memory space
 - One instruction is executed at a time

- A system's architecture is determined by both its hardware and its software
Computer Programming before von Neumann
Course Focus

SOFTWARE

HARDWARE
Course Focus

SOFTWARE

HARDWARE

ECE3534 Micro
Course Focus

ECE4534 Embedded Systems

ECE3534 Micro

SOFTWARE

HARDWARE
Course Focus

SOFTWARE

ECE4534 Embedded Systems

HARDWARE

ECE3534 Micro

ECE4514 Digital II
Hardware Design Levels
Hardware Design Levels

SYSTEM:
Processors, memory, I/O
Hardware Design Levels

SYSTEM:
Processors, memory, I/O

PROCESSOR:
Instruction sets, interfaces, data representation
Hardware Design Levels

SYSTEM:
Processors, memory, I/O

PROCESSOR:
Instruction sets, interfaces, data representation

REGISTER:
ALUs, data path control
Hardware Design Levels

SYSTEM:
Processors, memory, I/O

PROCESSOR:
Instruction sets, interfaces, data representation

REGISTER:
ALUs, data path control

GATE:
Boolean equations, timing, fanout, etc.
Software Design Levels
Software Design Levels

APPLICATION:
Excel, Matlab, Spice
Software Design Levels

APPLICATION: Excel, Matlab, Spice
HIGH-LEVEL LANGUAGE: C, C++, Java, FORTRAN
Efficiency and Portability
Software Design Levels

APPLICATION: Excel, Matlab, Spice

HIGH-LEVEL LANGUAGE: C, C++, Java, FORTRAN

Efficiency and Portability

ASSEMBLY: Access to machine-specific resources.
Software Design Levels

APPLICATION: Excel, Matlab, Spice

HIGH-LEVEL LANGUAGE: C, C++, Java, FORTRAN

Efficiency and Portability

ASSEMBLY:
Access to machine-specific resources.

MACHINE:
Not meant for human consumption
Microprocessor Progression (Intel)

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Transistors</th>
<th>Microns</th>
<th>Clock speed</th>
<th>Data width</th>
<th>MIPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>8080</td>
<td>1974</td>
<td>6,000</td>
<td>6</td>
<td>2 MHz</td>
<td>8 bits</td>
<td>0.64</td>
</tr>
<tr>
<td>8086</td>
<td>1978</td>
<td>29,000</td>
<td>3</td>
<td>5 MHz</td>
<td>16 bits</td>
<td></td>
</tr>
<tr>
<td>80286</td>
<td>1982</td>
<td>134,000</td>
<td>1.5</td>
<td>6 MHz</td>
<td>16 bits</td>
<td>1</td>
</tr>
<tr>
<td>80386</td>
<td>1985</td>
<td>275,000</td>
<td>1.5</td>
<td>16 MHz</td>
<td>32 bits</td>
<td>5</td>
</tr>
<tr>
<td>80486</td>
<td>1989</td>
<td>1,200,000</td>
<td>1</td>
<td>25 MHz</td>
<td>32 bits</td>
<td>20</td>
</tr>
<tr>
<td>Pentium</td>
<td>1993</td>
<td>3,100,000</td>
<td>0.8</td>
<td>60 MHz</td>
<td>32 bits 64-bit bus</td>
<td>100</td>
</tr>
<tr>
<td>Pentium II</td>
<td>1997</td>
<td>7,500,000</td>
<td>0.35</td>
<td>233 MHz</td>
<td>32 bits 64-bit bus</td>
<td>~300</td>
</tr>
<tr>
<td>Pentium III</td>
<td>1999</td>
<td>9,500,000</td>
<td>0.25</td>
<td>450 MHz</td>
<td>32 bits 64-bit bus</td>
<td>~510</td>
</tr>
<tr>
<td>Pentium 4</td>
<td>2000</td>
<td>42,000,000</td>
<td>0.18</td>
<td>1.5 GHz</td>
<td>32 bits 64-bit bus</td>
<td>~1,700</td>
</tr>
<tr>
<td>Pentium 4 "Prescott"</td>
<td>2004</td>
<td>125,000,000</td>
<td>0.09</td>
<td>3.6 GHz</td>
<td>32 bits 64-bit bus</td>
<td>~7,000</td>
</tr>
</tbody>
</table>

Source: http://computer.howstuffworks.com/microprocessor2.htm
(Compiled from The Intel Microprocessor Quick Reference Guide and TSCP Benchmark Scores)
Putting 0.065 Microns in Perspective

Transistor for 90 nm process

Influenza virus
Source: CDC
What happened to the 10 GHz Goal?

1. Why did Pentiums stall out at about 4 GHz?

2. How is performance being addressed now?
Answers:

1.

2.
Microprocessors

- High performance, general purpose "brains" for PCs and workstations
- Instruction decode and control, arithmetic/logic operations, registers, timing, external control
- Typical cost: $75 -- $500
- Annual demand: 10s of millions
Devices with high levels of integration for embedded control

- Microprocessor functions plus on-chip memory and peripheral functions (e.g. ports, timers)
- "Swiss army knife" of the technology
- Typical cost: $1-- $25
- Annual demand: billions!
Typical Baseline Microcontroller
Microprocessors have evolved in two directions:

- High-end Microprocessors
 - Increasing circuit integration
- Microcontrollers
 - Architectural Complexity
 - On-chip Functions
Microprocessor vs. Microcontroller

- Not always a clear distinction
- Today’s microprocessor may be tomorrow’s microcontroller

Microprocessor

- Includes memory management unit
- Lots of cache
- Performance is most important feature (cost is important, but secondary)
- Used mainly in desktop machines
Microprocessor vs. Microcontroller

- **Microcontroller**
 - Integrated RAM and ROM
 - No cache
 - Includes lots of peripherals
 - Used mainly in “embedded” applications
 - Often involves real-time control

- Important features include
 - Low cost
 - Low power consumption
 - Number of integrated peripherals
 - Interrupt response time
 - Amount of RAM and ROM
Some Microcontroller Applications

"When we sell it we have no idea whether it will end up in a toaster or the space shuttle" [article in Financial World, 1995]

- Pocket pagers
 (low-power, interprets characters, user interface)

- Cameras
 (low-power, exposure and focus control, user interface)

- Keyboard controllers
 (scanning, debounce, autorepeat, diagnostics)

- Modems
 (one for data transmission, one for command processing)

- Printers / copiers
 (paper positioning, color exposure, sensors)

- Charge card pay phones
 (card reading, dialing, carrier access)

- Lawn sprinkler controller
 (timer, valve control, user interface)

- Instrumentation
 (user interface, GPIB interface)
Higher-level View

- Sensors
- User Input
- Other Sources

Microcontroller
- Processing
- Timing
- Storage

- Actuators
- User Output
- Other Output
The Instruction Cycle

- **Fetch**
 - Control unit gets next instruction from memory

- **Decode**
 - Control unit figures out what instruction it has

- **Execute**
 - Control unit carries out the instruction by transferring data to/from appropriate places, possibly specifying ALU micro-operations and possibly involving I/O hardware.
Coming Soon . . .

- MicroBlaze hardware
- MicroBlaze software